Jos Kunst home page: Nederlands | English
by Jos Kunst (1978)
<< 9: Appendix III | Contents | 11: Appendix V >> |
1. | BivF(a, ¬b→a, (d∧¬b)→a) | 3.2.3 | Fig 22 |
2. | BivF(¬b→a, ¬b→d, d→¬b) | 3.2.3 | Fig 22 |
3. | BivF(¬b↔d, a→(¬b↔d)) | 3.2.3 | Fig 22 |
4. | BivF(¬b↔d, l∧(¬b↔d), a→(¬b↔d)) | 3.3.3 | Fig 23 |
5. | BivF(¬b↔d, (i∧l)∧(¬b↔d), a→(¬b↔d)) | 3.3.3 | Fig 23 |
6. | BivF(¬b↔d, l∧(a→(¬b↔d))) | 3.3.3 | Fig 23 |
7. | BivF(¬b↔d, (i∧l)∧(a→(¬b↔d))) | 3.3.3 | Fig 23 |
8. | BivF(j→k, i, i→(j→k)) | 3.3.5 | Fig 24 |
9. | BivF(j→k, i→(j→k), i) | 3.3.5 | Fig 24 |
10. | BivF(j→k, l) | 3.3.5 | Fig 24 |
11. | BivF(j→k, i∧l) | 3.3.5 | Fig 24 |
12. | BivF(¬b↔d, ¬(b∨d)→j) | 3.4.1 | Fig 25 |
13. | BivF(¬(b∨d)→j, T) | 3.4.1 | Fig 25 |
14. | BivF(c→¬d, c↔¬d, (c∧d)→a) | 3.4.5 | Fig 26 |
15. | BivF(c↔¬d, (b↔-d)∧(¬c→d)) | 3.4.5 | Fig 26 |
16. | BivF((b↔¬d)∧(¬c→d), (b→¬d)∧(¬c→d)) | 3.4.5 | Fig 26 |
17. | BivF(¬c→d, (b→¬d )∧(¬c→d), ¬(c∨d)→¬a) | 3.4.5 | Fig 26 |
18. | BivF((b→¬d)∧(¬c→d), (b→¬d)∧(b→c)) | 3.4.5 | Fig 26 |
19. | BivF(m, l→m, (l∨m)→n) | 3.4.6 | Fig 27 |
20. | BivF(m, (i∧l)→m, ((i∧l)∨m)→n) | 3.4.6 | Fig 27 |
21. | BivF(a→(o∧¬p), a→¬p) | 3.4.6 | Fig 27 |
22. | BivF(a→¬p, (a∧d)→(p→¬c), m→((a∧d)→(p→¬c))) | 3.4.6 | Fig 27 |
23 | BivF(m, (a∧d)→(p→¬c), T) | 3.4.6 | Fig 27 |
24. | BivF(a→f, (a∧¬e)→(¬f→g)) | 3.4.7 | Fig 28 |
25. | BivF(a→f,a→(¬f→g)) | 3.4.7 | Fig 28 |
26. | BivF(a→f, (a∧e)→(¬f→(g∨h))) | 3.4.7 | Fig 28 |
27. | BivF((a∧¬e)→(¬f→g), T) | 3.4.7 | Fig 28 |
28. | BivF(a→ (¬f→g), T) | 3.4.7 | Fig 28 |
All two-place BivF's are substitution instances of Fig 6; all three-place ones of Fig 9.
<< 9: Appendix III | Contents | 11: Appendix V >> |
Jos Kunst home page Nederlands | Jos Kunst home page English | Sitemap